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Abstract — In [1] a technique for injecting perfect plane
waves into finite regions of space in FDTD was reported. The
essence of the technique, called Field Teleportation, is to
invoke the principle of equivalent sources using FDTD’s
discrete definition of the curl to copy any field propagating in
one FDTD domain to a finite region of another domain. In
this paper we apply this technique of Field Teleportation to
the original domain itself to create a boundary across which
any outward traveling FDTD field produces an exact
negative copy of itself. Repeated application of this radiation
boundary and termination of the domain with a2 moderate
abserbing boundary condition readily yields reflection
coefficients of the order of 80 dB up to grazing incidence
onto the boundary.

I. INTRODUCTION

The advent of Berenger's PML. [2] started a new era in
FDTD modeling., Since then many improvements have
been made to the concept of the Absorbing Boundary
Condition [3-6] to the point that any practitioner willing to
spend the computational resources can create extremely
quiet FDTD zones for performing numerical
electromagnetics experiments. However, implementing a
PML is pot a trivial undertaking, especially for the
material intersections and terminations. For these reasons
it would be desirable to create a new Radiation Condition
that is broadband in frequency and angle, and at the same
time easy to program. In this paper it is shown that such a
Radiation Boundary Condition (RBC) «can be
implemented using the discrete version of Schelkunoff’s
equivalent currents. This approach was used in [1] to
teleport perfect plane waves into finite regions of FDTD
with no leakage. Here the RBC effect is obtained by
teleporting outgoing fields back into the FDTD domain
with a negative sign, thus canceling outward traveling
waves,

In Section II of this paper we show how discrete
equivalent currents are included in the regular FDTD
update procedure and thus allow the teleportation of
fields. In Section HI the Field Telepertation scheme is
implemented within the source grid to create the RBC,
After comparing this RBC with the standard PML in free
space, we demonstrate its excellent performance as a

termination of a domain with an inhomogeneous boundary
between a lossless and a lossy dielectric,

II. TELEPORTATION OF FIELDS

If the constitutive properties of the materials modeled
inside the FDTD space are assumed from the outset to be
dispersive, then both the DC electric conductivity and the
analogous fictitious DC magnetic conductivity can be
absorbed into the permittivity and permeability operators,
g(t}, u(t). For instance, the simplest dispersive material
composed of a constant permittivity and a DC
conductivity has as its time domain operator permittivity:

s(t)=s,+“dt§]- 4}

where the half-bracket term signiftes that the integral is an
operator that acts on the functions to the right of it. In this
paper we use the convenfion that bold-faced variables
contain (dispersive) time domain operators. Equation (1)
is the time domain version of the usual frequency domain
expression: e(w)=g,+a/(jwep) ; and it may be readily
verified that it leads to the more traditional form in
equation 2 for the case of a time invariant conductivity.
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Clearly all currents induced in a2 material are taken into
account by such dispersive constitutive operators.
Therefore Maxwell’s first Curl equation, in the absence of
impressed currents, can always be written in the form:

~ 0D

VxH= = (3)
Now, the update equation procedure of FDTD can be
understood as application of equation 3, to derive the
updated Displacement current from the curl of H,
followed by derivation of the updated Electric field from
the auxiliary differential equation connecting E to D[6].
This is a standard viewpoint adopted when FDTD is
applied to dispersive materials, Note that as would be
expected from its time derivative nature, the Displacement
current exists at the half-integer timesteps, in synchrony
with the magnetic field.
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For the case of the simplest material of equation 1, the
update equation given in equation (4) is an adequate
connection between D and E for most conductivities of
interest; and we use it as an example because of its
simplicity. (Of course if the relaxation time in the
conducting material is short compared to dt, then the so-
called exponential time-stepping expression can be used.
It will be clear from the derivation that follows that the
procedure described below applies equally well to any
arbitrary dispersive material).
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In equation (4), the first term on the right describes the
decay of the Electric field from last timestep as a result of
conductivity-driven diffusion. The second term on the
right describes an incremental E field, call it AE™! that
results from the source term (in this case the Displacement
current).

Now consider the case when an impressed current is
included in equation (3). Clearly, to perform the update,
the equation must be written as:

EIH-I .
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So that an impressed current enters into the update
equation (4) through the Displacement current. In other
words, in the presence of an impressed current in this
material medium, there is an additional incremental E
field given by:

n+l dt 1 n+l
AFE —m{l_'_ odt }(—Je) 2 (6)
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The importance of equation {(6) is that it shows that all
impressed currents must be processed through the
dispersive constitutive properties to be properly applied
inside the FDTD update cycle. Now, we know that
Schelkunoff’s equivalent currents allow us to recreate a
total field outside & closed volume bounded by a surface §
by following the prescription
K, =ﬁxHrorsKm = _ﬁxEtot M

where » is the outward surface normal to S. Clearly then,
any total field existing inside one FDTD domain at a
boundary surface (taken for simplicity to be a plane
normal to one of the principal axes) can be turned into a
set of equivalent surface cwrents lying on an identical
boundary surface in another FDTD dormnain in such a way
that the currents radiate exactly the same field in the
second domain as exists in the first. In other words, the
fields have been teleported from one domain to another.
When these currents are correctly implemented in FDTD,
they behave exactly as Schelkunoff’s currents, creating
the correct field on the “right” side of S and zero field on

the left side. There is no leakage, as shown in reference
[13.

Recognizing that in the discrete space of FDTD,
J=K,/ds, with ds being the size of the space cell, equation
(6) tells us that the incremental fields are given by:
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In a typical FDID computer program the
implementation would be as follows. (For the sake of
simplicity only the case of a 2DTM space is given). The
four possible teleportation walls of interest would be a
wall that teleports to the left along the x-axis, one that
teleports to the right along the x axis, one that does so
downwards along the y axis, or upwards along the y axis,
located at i, frigns Foonom Jrop (Where 1 is the integer index
for cells along x and j for cells along y). Along those
walls, the following quantitics are stored in a buffer

matrix immediately after the E-field loop:

For all desired i :

Eremp (i’jxop)= Aer ) Hz(i’jmp)

Etemp (j » Tbottom )= Ay - H, (‘E » Jpottom ) @)
where
A = dt 0, = G(i’ jmp +1}jt
T gt gy t U4 00} T 2608, [ jigp +1) (10)
Ay = — dt , O = o'(i:.jbouam)d“
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and for; :
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E!emp (irigkl » .]) = _Aer . Hz (irigh! » .])
where '
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Similar equations are derived for the H-field. To
teleport the field into an identical FDTD space, these
buffered values are used as sources as follows:
Along i:

Ex (i’jwp + 1)= Ex (19 jmp +1)+ Efemp (i’ jtop)

. . . (13
Ex (1’ J bortom ): Ex (I’ Jovotiom )+ E!emp (I’Jbozrom)
Along j:
Ey(in'ghr +1,j)= E,v ("rfghr +1’j)+ E!emp(iright’j) (14)

Ey(ileﬂ’j)= Ey(ileﬁﬁj)*'Elemp(ileﬁ’j)
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A similar procedure is followed with the H-field.

Note that these equations are exactly like the ordinary
update equations of FDTD and therefore they work for all
time varying fields that can be supported by the FDTD
grid. Since the teleporied fields are exact copies of the
original fields, it is natural to ask what would happen if
the teleported fietds were injected back into the source
domain but with a sign change. This would lead to exact
cancellation of the outgoing waves in the domain, the
perfect absorbing boundary condition.

III. SELF-TELEPORTATION OF FIELDS

It turns out that it is impossible to teleport the fields back
onto the source walls because the teleportation recipe gets
caught in a feedback loop. However, it is possible to
teleport the copied fields one cell beyond where they were
collected. To compensate for this one cell shift, the fields
are stored one step in time in the past. Therefore the
cancellation is not perfect, but it is very good (typically of
the order of —20dB, time domain average, per wall).
These RBC walls can be cascaded one behind the other by
leaving just one cell of separation (again to prevent
feedback). The FDTD domain behind the Radiation
Boundary Condition can be terminated with any simple
one-sided termination.

In this paper, a numerical comparison of the RBC and
the unsplit PML is presented. Two schemes were chosen
to assess the RBC’s quality in terms of evanescent waves
and traveling waves incident on the terminal boundary
over a wide range of angles. No special attempts have
been made to optimize either RBC or PML in testing
configuration. The first comparison between RBC and
PML has been done for free space modeled as an
“anechoic chamber”™. A square 2D X-¥ domain 700 by 700
cells in area was alternately terminated with a 10 cell PML
or with an RBC field termination layer consisting of a
simple one-sided termination and 3 RBC walls. The
unsplit PML scheme employs a cubical law of
conductivity [4]. A z-directed electric field is injected
exactly in the center of the area having a time dependence
of the form: pulse = sin? (2m/80), 0< <80 and pulse =
0, for n>80.

The total energy within the domain (normalized to its
maximum value) as function of the time step », for both
boundary conditions is shown in Figurel. In general, the
RBC absorbs outgeing waves much better than PML,
giving —65 dB attenuation after a second echo reflection (-
35 dB for the PML). Note that the RBC scheme consumes
less time and memory. A 6000 time steps run took 330
seconds for the RBC scheme and 583 for the PML (and
used 12 Mb versus 20-Mb for the PML).

Near-field RBC absorption has also been studied in the
numerical experiment schematically shown in Figure 2. A
point source generates continuous wave Sin(2sm/80)
for 1400 time steps that is enough to propagate a signal in
the measurement area without any reflections from the
front and back walls (if the source is located at x=700,
y=350). The signal distribution (magnitude of the
principal Fourier component at the excitation frequency)
over the measurement area is shown in Figure 3 for the
case when the source is at the center of the domain in y
and for a second case where it is moved closer to one
sidewall.
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Fig.1. Stored energy versus time step for 10-cells RBC and
PMIL. schemes for the anechoic chamber modeling.

10

X . . 1060
Fig. 2. Scheme of the numerical experiment (initial source
position is shown).

It is seen that that when the source is located close enough
to the absorption layer (for example at x = 700, y = 30),
the reflection from the wall changes the field distribution
inside the area (as shown for PML. in Fig. 3b). Figure 4
repeats the experiment with the RBC. The perturbation in
the case of the RBC is approximately one order of
magnitude down compared to the PML.

A more challenging problem for an ABC is that of
terminating an inhomogeneous domain, for instance the
problem of a source in free space above a lossy dielectric
half-space.
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Fig.3. (a) Magnitude of the unperturbed Ez field (source at
x=700,y=350), (b) Magnitude of the Ez field in PML vicinity
(source at x=700,y=30), PML layer is 10-cells wide ( y=0-10).
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Fig.4. Magnitude of the Ez field in RBC vicinity (source at
x=700,y=30).

The ABC is required to cut transparently through both
media. In the PML, since the electric and magnetic
conductivities differ in both media there is a “matching”
problem at the boundary. However, for the RBC, since
the attenuation of the outgoing waves is created by exact
FDTD copies of the incident waves, all matching occurs
automatically. Figure 5, shows a snapshot in time of the
problem domain. The field difference just above the RBC,
between the RBC-truncated domain and the full 600x600
domain is plotted against an “effective” angle of incidence
(obtained by drawing a straight line from the source to the
sampled point). The RBC again affords -80 dB
attenuation at nearly all angles of incidence and it suffers
no discontinuity at the air/lossy-dielectric boundary.

IV. CONCLUSION

A new Radiation Boundary Condition that works for
arbitrary time varying fields has been proposed and
demonstrated. It is trivial to program into conventional
FDTD and it is more angle and material insensitive than
the PML.
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Fig. 5. Snapshot in time of the numerical experiment in an
inhomogeneous space and the reflection coefficient as a function
of angle of incidence. 0:2~4-j0.6, A: £=4-j0.75,0: £7~4-j1.0
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